Model
- class savant.base.model.Model(local_path=None, remote=None, model_file=None, batch_size=1, precision=ModelPrecision.FP16, input=ModelInput(object='auto.frame', layer_name=None, shape=None, maintain_aspect_ratio=False, symmetric_padding=False, scale_factor=1.0, offsets=(0.0, 0.0, 0.0), color_format=<ModelColorFormat.RGB: 0>, preprocess_object_meta=None, preprocess_object_image=None))
Base model configuration template.
Validates entries in a module config file under
element.model
.- local_path: str | None = None
Path where all the necessary model files are placed. By default, the value of module parameter “model_path” and element name will be used (“model_path / element_name”).
- remote: RemoteFile | None = None
Configuration of model files remote location. Supported schemes: s3, http, https, ftp.
- model_file: str | None = None
The model file, eg yolov4.onnx.
Note
The model file is specified without a location. The absolute path to the model file will be defined as “
local_path
/model_file
”.
- batch_size: int = 1
Number of frames or objects to be inferred together in a batch.
Note
In case the model is an NvInferModel and it is configured to use the TRT engine file directly, the default value for
batch_size
will be taken from the engine file name, by parsing it according to the scheme {model_name}_b{batch_size}_gpu{gpu_id}_{precision}.engine
- precision: ModelPrecision = 2
Data format to be used by inference.
Example
precision: fp16 # precision: int8 # precision: fp32
Note
In case the model is an NvInferModel and it is configured to use the TRT engine file directly, the default value for
precision
will be taken from the engine file name, by parsing it according to the scheme {model_name}_b{batch_size}_gpu{gpu_id}_{precision}.engine
- input: ModelInput = ModelInput(object='auto.frame', layer_name=None, shape=None, maintain_aspect_ratio=False, symmetric_padding=False, scale_factor=1.0, offsets=(0.0, 0.0, 0.0), color_format=<ModelColorFormat.RGB: 0>, preprocess_object_meta=None, preprocess_object_image=None)
Optional configuration of input data and custom preprocessing methods for a model. If not set, then input will default to entire frame.