NvInferModel

NvInferModel inheritance diagram
- class savant.deepstream.nvinfer.model.NvInferModel(local_path=None, remote=None, model_file=None, batch_size=1, precision=ModelPrecision.FP16, input=NvInferModelInput(object='auto.frame', layer_name=None, shape=None, maintain_aspect_ratio=False, symmetric_padding=False, scale_factor=1.0, offsets=(0.0, 0.0, 0.0), color_format=<ModelColorFormat.RGB: 0>, preprocess_object_meta=None, preprocess_object_image=None, object_min_width=None, object_min_height=None, object_max_width=None, object_max_height=None), format=None, config_file=None, int8_calib_file=None, engine_file=None, proto_file=None, custom_config_file=None, mean_file=None, label_file=None, tlt_model_key=None, gpu_id=0, interval=0, workspace_size=6144, custom_lib_path=None, engine_create_func_name=None, layer_device_precision=<factory>, enable_dla=None, use_dla_core=None, scaling_compute_hw=None, scaling_filter=None)
 Base configuration template for a nvinfer model.
- input: NvInferModelInput = NvInferModelInput(object='auto.frame', layer_name=None, shape=None, maintain_aspect_ratio=False, symmetric_padding=False, scale_factor=1.0, offsets=(0.0, 0.0, 0.0), color_format=<ModelColorFormat.RGB: 0>, preprocess_object_meta=None, preprocess_object_image=None, object_min_width=None, object_min_height=None, object_max_width=None, object_max_height=None)
 Optional configuration of input data and custom preprocessing methods for a model. If not set, then input will default to entire frame.
- format: NvInferModelFormat | None = None
 Model file format.
Example
format: onnx # format: caffe # etc. # look in enum for full list of format options
- int8_calib_file: str | None = None
 INT8 calibration file for dynamic range adjustment with an FP32 model. Required only for models in INT8.
- batch_size: int = 1
 Number of frames or objects to be inferred together in a batch.
Note
In case the model is an NvInferModel and it is configured to use the TRT engine file directly, the default value for
batch_sizewill be taken from the engine file name, by parsing it according to the scheme {model_name}_b{batch_size}_gpu{gpu_id}_{precision}.engine
- local_path: str | None = None
 Path where all the necessary model files are placed. By default, the value of module parameter “model_path” and element name will be used (“model_path / element_name”).
- model_file: str | None = None
 The model file, eg yolov4.onnx.
Note
The model file is specified without a location. The absolute path to the model file will be defined as “
local_path/model_file”.
- precision: ModelPrecision = 2
 Data format to be used by inference.
Example
precision: fp16 # precision: int8 # precision: fp32
Note
In case the model is an NvInferModel and it is configured to use the TRT engine file directly, the default value for
precisionwill be taken from the engine file name, by parsing it according to the scheme {model_name}_b{batch_size}_gpu{gpu_id}_{precision}.engine
- remote: RemoteFile | None = None
 Configuration of model files remote location. Supported schemes: s3, http, https, ftp.
- proto_file: str | None = None
 Caffe model prototxt file. By default, the model file name (
model_file) will be used with the extension.prototxt.
- custom_config_file: str | None = None
 Configuration file for custom model, eg for YOLO. By default, the model file name (
model_file) will be used with the extension.cfg.
- gpu_id: int = 0
 Device ID of GPU to use for pre-processing/inference (dGPU only).
Note
In case the model is configured to use the TRT engine file directly, the default value for
gpu_idwill be taken from theengine_file, by parsing it according to the scheme {model_name}_b{batch_size}_gpu{gpu_id}_{precision}.engine
- custom_lib_path: str | None = None
 Absolute pathname of a library containing custom method implementations for custom models.
- engine_create_func_name: str | None = None
 Name of the custom TensorRT CudaEngine creation function.
- layer_device_precision: List[str]
 Specifies the device type and precision for any layer in the network. List of items of format
<layer1-name>:<precision>:<device-type>.